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1 Introduction

Dilaton-gravity plane waves play a special role in string theory and related approaches to

quantum gravity, since they provide a rare example of tractable strongly curved (possibly

singular) space-time backgrounds that depend on (light-cone) time (see, for instance, [1, 2],

as well as the recent work by some of the present authors [3]). Furthermore they permit a

formulation of (time-dependent) matrix theories of quantum gravity [4, 5].

A likewise prominent role is accorded to the p-brane supergravity solutions (see,

e.g., [6]). Through their connection with the D-branes of string theory, they lead to

the formulation of the AdS/CFT correspondence [7] and its generalizations to different

dimensions [8].

Hence, it appears important to derive supergravity solutions describing p-branes em-

bedded into dilaton-gravity plane waves. The simplest of these solutions are supersym-

metric configurations corresponding to extremal p-branes aligned along the propagation

direction of the plane wave (the existence of such configurations can be suggested by the

DBI worldvolume analysis for the corresponding D-branes). Some considerations of these,

and related, configurations have been undertaken in [9–12] for highly specific choices of the

plane wave profile (for some other related publications, see [13–16]). Our present purpose

is to derive this type of solutions without any assumptions regarding the functional shape

of the asymptotic plane wave.

– 1 –
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2 Some general considerations

We shall start by inspecting the ten-dimensional Einstein-frame supergravity equations of

motion (see, e.g., [6]):

Rµν =
1

2
∂µφ∂νφ+

∑

N

1

2nN !
eaN φ

[

nN

(

F 2
nN

)

µν
−
nN − 1

8
F 2

nN
gµν

]

, (2.1)

�φ =
∑

N

aN

2nN !
eaN φF 2

nN
, (2.2)

∂µ1

(√
−geaN φFµ1···µnN

)

= 0, (2.3)

∂[µFµ1···µnN
] = 0, (2.4)

where N labels the various form fields of the theory, with field strengths FnN
of rank nN ,

and aN = (5 − nN)/2 for Ramond-Ramond form fields, for the following ansatz:

ds2E = A(u, r)
(

−2dudv +K(u, r)du2 + dy2
α

)

+B(u, r) dx2
a, (2.5)

φ = φ(u, r), (2.6)

Fuvα1···αp−1a =
xa

r

F (u, r)A(p+1)/2e
p−3

2
φ

B(7−p)/2
ǫα1···αp−1

[

1
√

2

]

p=3

(p ≤ 3), (2.7)

Fa1···a8−p
=
xa

r
F (u, r)ǫa1···a8−pa

[

1
√

2

]

p=3

(p ≥ 3), (2.8)

where r2 = xaxa, p is the number of spatial dimensions of the p-brane, F is the field

strength of the corresponding Ramond-Ramond form, α runs from 1 to p − 1 and a runs

from 1 to 9 − p; the factors of 1/
√

2 are only inserted into the form field ansatz for the

self-dual case p = 3. This ansatz is not the most general one allowed by the symmetries (in

particular, there is no Poincaré symmetry relating guv and gαα when the u-dependences

are non-trivial), however it will prove sufficiently general for our purposes.

We shall refer the reader to the appendix for the explicit “raw” form of the equations of

motion for our ansatz, and only present here their convenient combinations. Throughout,

prime denotes derivatives with respect to r and dot denotes derivatives with respect to

u. First of all, the equations for the form (2.3)–(2.4) can be integrated straightforwardly

to yield

F (u, r) =
Q

r8−p
, (2.9)

where Q measures the brane charge. With these dependences, the uv-component of Ein-

stein’s equations (identical to the αα-components) can be written as:

(

r8−pA(p+1)/2B(7−p)/2A
′

A

)′

=
7 − p

8
Q2 e

p−3

2
φA(p+1)/2

r8−pB(7−p)/2
. (2.10)

The dilaton equation (2.2) gives

(

r8−pA(p+1)/2B(7−p)/2φ′
)′

=
p− 3

4
Q2 e

p−3

2
φA(p+1)/2

r8−pB(7−p)/2
. (2.11)

– 2 –
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The ab-components of Einstein’s equations yield (from terms proportional to δab)

(

r8−pA(p+1)/2B(7−p)/2B
′

B

)′

+2r7−p
(

A(p+1)/2B(7−p)/2
)′

=−
p+1

8
Q2 e

p−3

2
φA(p+1)/2

r8−pB(7−p)/2
, (2.12)

and (from terms proportional to xaxb, after (2.10) and (2.12) have been used to eliminate

the terms depending on Q, i.e., originating from the form field)

−
(

p
A′

A
+ (8 − p)

B′

B

)′

+ 4
A′

A

B′

B
+

8 − p

r

(

A′

A
−
B′

B

)

= φ′2. (2.13)

The ua-component of Einstein’s equations gives

−
(

p
A′

A
+ (8 − p)

B′

B

).

+ 4
A′

A

Ḃ

B
= φ̇φ′. (2.14)

Finally, the uu-component of Einstein’s equations (combined with the uv-component to

eliminate the form) yields

−
A

B

(

r8−pA(p+1)/2B(7−p)/2K ′
)′

r8−pA(p+1)/2B(7−p)/2
=

= (p − 1)





Ä

A
−

3

2

(

Ȧ

A

)2


+ (9 − p)





B̈

B
−

1

2

(

Ḃ

B

)2

−
Ḃ

B

Ȧ

A



+ φ̇2.

(2.15)

Equations (2.10)–(2.13) are identical to those for the static (u-independent) problem,

and should be solved first. Once that has been accomplished, all the integration constants

should be promoted to functions of u, and the result should be substituted into (2.14),

which will constrain the u-dependences. Finally, (2.15) will determine K. This algebraic

structure essentially reduces the u-dependent case to the u-independent one.

The solution for the u-independent case corresponding to our present ansatz has been

given in [17]. Essentially, one eliminates the Q-dependent terms (coming from the form

field) from (2.11) and (2.12) using (2.10) to obtain

(

r8−pA(p+1)/2B(7−p)/2

(

φ′ −
2(p − 3)

7 − p

A′

A

))′

= 0, (2.16)

(

r15−2p
(

A(p+1)/2B(7−p)/2
)′
)′

= 0. (2.17)

These equations are easily integrated, whereupon (2.10) reduces to a Liouville equation

(one-dimensional classical particle moving in an exponential potential) with respect to a

new variable ρ defined as d/dρ = r8−pA(p+1)/2B(7−p)/2d/dr. All the non-linearity of the

problem becomes concentrated in this simple non-linear equation, which can be solved

explicitly in terms of hyperbolic functions. Furthermore, as it turns out, equation (2.13)

can be equivalently rewritten as an energy value specification for the above-mentioned

Liouville equation and simply reduces to one constraint on the integration constants. We

shall refer the reader to [17] for explicit expressions.

– 3 –
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Even though the static (u-independent) problem can be solved explicitly for our ansatz,

it appears to be of limited use for general non-extremal p-branes. The ansatz we have chosen

was not the most general one allowed by the symmetries of the problem (though it will

suffice for constructing the extremal solutions we are aiming at, and help us to keep the

derivations reasonably compact), and in the presence of strong non-linearities, one should

expect all types of motion permitted by the symmetry constraints to mix. In particular,

one should relax the equality of guv and gαα (some of related static non-extremal solutions

have been constructed in [18], and a rather general analysis has been presented in [19]), and

add a non-zero gua. In our present investigations, we shall not pursue this computation-

extensive program, concentrating instead on the case of extremal p-branes, which can be

completely analyzed using the ansatz (2.5)–(2.8).

3 Extremal solutions

To obtain extremal p-brane solutions, we take particular integrals of (2.16) and (2.17),

namely:
(

A(p+1)/2B(7−p)/2
)′

= 0, φ′ −
2(p− 3)

7 − p

A′

A
= 0. (3.1)

(These particular integrals are known to correspond to extremal p-branes for the

u-independent case.) One can then take

A ∝
(

1 +
R7−p

r7−p

)(p−7)/8

(3.2)

(where R will turn out to be simply another parametrization for the brane charge Q; we

shall restore the expressions for the form field explicitly in our final results), compute

the corresponding B and φ using (3.1), and check that the resulting A, B and φ solve

both (2.10) and (2.13). Equations (2.10)–(2.13) have now been satisfied.

As explained in the previous section, one needs to further promote all the integration

constants to functions of u and solve (2.14) and (2.15). The u-dependent prefactor in guv

can be changed arbitrarily by a redefinition of u, and we can use this freedom to relate

the u-dependent prefactor of A to the u-dependence of the dilaton. We thus introduce the

following expressions to be substituted into (2.14) and (2.15):

A = e−f(u)/2

(

1 + h(u)
R7−p

r7−p

)(p−7)/8

,

B = µ(u)e−f(u)/2

(

1 + h(u)
R7−p

r7−p

)(p+1)/8

,

φ = f(u) +
3 − p

4
ln

(

1 + h(u)
R7−p

r7−p

)

. (3.3)

This ansatz is designed to make the large r asymptotics in string frame (ds2 ≡ eφ/2ds2E)

look simple, as we choose to parametrize our solutions by this asymptotics. guv is set to

– 4 –
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go to 1 for large r (in string frame) as a matter of gauge choice; gαα is forced to go to 1

for large r by hand. Equation (2.14) then yields

ḣ

h
= ḟ −

7 − p

2

µ̇

µ
, h =

ef

µ(7−p)/2
(3.4)

(the integration constant can always be absorbed into R). Equation (2.15) becomes

(

r8−pK ′
)′

µr8−p
=

[

4f̈ − (9 − p)

(

µ̈

µ
−

µ̇2

2µ2

)]

+
2efR7−p

(√
µr
)7−p

[

f̈ − ḟ
µ̇

µ
−
µ̈

µ
+

9 − p

4

µ̇2

µ2

]

, (3.5)

which is easily integrated to obtain a specific combination of r2 and 1/r5−p dependences.1

If we now examine the large r asymptotics of our solutions in string frame, we obtain:

ds2 ≡ eφ/2ds2E = −2dudv +K(u, r)du2 + dy2
α + µ(u)dx2

a. (3.6)

As indicated above, K(u, r) contains an r2 term, so the asymptotics indeed look like a

plane wave. It is known, however, that, by redefining v and xa, plane wave metrics can

always be put into a form that makes the r2du2 term in the metric vanish, with the wave

profile encoded in µ(u) (the Rosen form), or into a form that makes µ(u) = 1, with the

wave profile encoded in the coefficient of the r2du2 term in the metric (the Brinkmann

form). Not surprisingly, this kind of transformations can be extended to our entire p-brane

solutions (at all values of r).

More specifically, one can check that the transformation

v = ṽ + µ(u)η(u)η̇(u)

(

r̃2

2
+ h(u)

(

R

η(u)

)7−p r̃p−5

p− 5

)

, xa = η(u)x̃a (3.7)

preserves the algebraic form of our ansatz given by (2.5) and (3.3), while multiplying µ

by η2. Since η is an arbitrary function of u, it can be used to set µ to 1, in which case

our p-brane solution is parametrized in a way that approaches the Brinkmann form of the

plane wave in the asymptotic region. If this coordinate system is chosen, (3.5) simplifies

further and is integrated to yield

K = f̈ r2
(

2

9 − p
−

ef

5 − p

R7−p

r7−p

)

. (3.8)

(Of course, other parametrization choices can be made, with (3.3)–(3.5) giving the appro-

priate solutions; also, as already mentioned, we do not include the homogeneous solutions

of (3.5) into our expressions.) With all the ingredients assembled together, the asymp-

totically Brinkmann form of our extremal plane-wave-p-brane solutions can be written, in

1It is always possible to add terms solving the homogeneous version of (3.5), i.e., r0 and 1/r7−p with

arbitrary u-dependent coefficients. The r-independent term can be absorbed into a redefinition of v. The

1/r7−p term describes a peculiar singular pp-wave that propagates parallel to the brane essentially not

interacting with it (in the sense that the shape of this wave does not affect the metric apart from its

uu-component). We shall ignore these terms in our present considerations.

– 5 –
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string frame, as follows:

ds2 ≡ eφ/2ds2E =

(

1 + ef(u)R
7−p

r7−p

)1/2

dx2
a

+

(

1+ef(u)R
7−p

r7−p

)−1/2
[

−2dudv+f̈(u) r2

(

2

9−p
−
ef(u)

5−p
R7−p

r7−p

)

du2+dy2
α

]

,

φ = f(u) +
3 − p

4
ln

(

1 + ef(u)R
7−p

r7−p

)

, (3.9)

Fuvα1···αp−1a =
xa

r
e−f(u) ∂

∂r

(

1 + ef(u)R
7−p

r7−p

)−1

ǫα1···αp−1

[

1
√

2

]

p=3

(p ≤ 3),

Fa1···a8−p
=
xa

r
e−f(u) ∂

∂r

(

1 + ef(u)R
7−p

r7−p

)

ǫa1···a8−pa

[

1
√

2

]

p=3

(p ≥ 3). (3.10)

For large values of r, this metric takes the form (ignoring the infrared problems for branes

with a small number of transverse dimensions)

ds2 = −2dudv +
2

9 − p
f̈(u) r2du2 + dy2

α + dx2
a, φ = f(u), (3.11)

which is indeed the most general Brinkmann-coordinate plane wave (isotropic with respect

to xa-directions and with flat yα-directions), written in string frame.

Comparing our result to the previously published derivations, one can note that (22)

of [9] becomes identical to our (3.10) for a specific choice of f(u) in the dilaton profile

as a linear function of u. For p = 1, (21) of [9] corresponds2 to a special choice of f(u)

in the dilaton profile (logarithmic in u, if the definition of u is changed to agree with

the one we are using), for which (in the asymptotically Rosen frame, different from the

one used in (3.10) and related to it by transformations of the form (3.7)), the du2 term

disappears from the metric and the u- and r-dependences factorize throughout. For p > 1,

(21) of [9] corresponds to a plane wave asymptotics different from (3.11), with non-trivial

yα polarizations present in the asymptotic plane wave (there is a u-dependent function

multiplying dy2
α in the asymptotic expression for the metric). We have not considered

such asymptotic plane waves here for the sake of compactness, but one should not expect

any considerable complications in including them (the brane geometry is trivial in the

longitudinal directions, so superposing plane waves polarized in yα-directions on it should

be even simpler than for the case of xa-directions). The reason why only special choices of

the functional shape of the asymptotic plane wave appeared in the previous publications is

that assumptions have been made about u- and r-dependence factorization, or about the

absence of du2 terms in the metric. By relaxing these assumptions, we have restored the

functional arbitrariness of the asymptotic plane wave profile.

2Incidentally, (39) of [11] presents a family of intersecting p1-p5-solutions that should reduce to (21)

of [9] when the 5-brane charge is set to 0. [11] suggests that this family of solutions should have two free

parameters (three numbers, a, b and c with one quadratic constraint). However, we believe that there is

in fact only a one-parameter family in (39) of [11], corresponding to the single parameter Q of [9] (when

the 5-brane charge is set to 0). An additional constraint on a, b and c of [11] (restoring the correspondence

between (39) of [11] and (21) of [9]) can be derived by considering the ur-component of Einstein’s equations.

– 6 –
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4 Supersymmetry

The fact that, in constructing our solutions, we have relied on the particular integrals (3.1)

of the equations of motion (which, for the u-independent case, correspond to extremal

BPS solutions) makes it natural to expect that our u-dependent solutions will likewise be

supersymmetric (and thus related to the D-branes of string theory). We shall now verify

this proposition.

The supersymmetry transformations of the dilatino and the gravitino in string frame

are given by [20, 21]

δλ = (∂µφ)Γµε+
3 − p

4(p+ 2)!
eφFµ1... µp+2

Γµ1...µp+2ε′(p) , (4.1)

δψµ =

(

∂µ +
1

4
ωµ µ̂ν̂γ

µ̂ν̂

)

ε+
(−1)p

8(p + 2)!
eφFµ1...µp+2

Γµ1...µp+2Γµε
′
(p) , (4.2)

where γµ̂ are the Minkowski space γ-matrices and Γµ = eµµ̂γ
µ̂, with eµ̂µ being the vielbein

and the hatted indices referring to the tangent Minkowski space-time. ε is a Majorana

spinor for type IIA and a complex Weyl spinor for type IIB and ε′ is defined as:

ε′(p=1,5) = iε⋆, ε′(p=3) = iε, ε′(p=2,6) = γ11ε, ε′(p=4) = ε . (4.3)

These supersymmetry variations are written in a formalism where both form fields and

their duals are explicitly present, and we should use the duals of the forms of (2.5)–(2.8)

for p > 3 (we shall also not consider explicitly the p = 3 self-dual case for the sake of

compactness).

We shall examine the supersymmetry variations for the following ansatz, written in

string frame:

ds2 = As(u, r)(−2dudv +K(u, r)du2 + dy2
α) +Bs(u, r)dx

2
a , (4.4)

with

As = eφ/2A =

(

1 + h(u)
R7−p

r7−p

)−1/2

, (4.5)

Bs = eφ/2B = µ(u)

(

1 + h(u)
R7−p

r7−p

)1/2

(4.6)

and

φ = f(u) +
3 − p

4
ln

(

1 + h(u)
R7−p

r7−p

)

= f(u) −
3 − p

2
lnAs , (4.7)

Fuvα1...αp−1a = e−f x
a

r
∂r

(

1 + h(u)
R7−p

r7−p

)−1

ǫα1...αp−1
= 2e−fA′

sAs
xa

r
ǫα1...αp−1

. (4.8)

This ansatz includes (and is considerably more general than) our solution (3.10).

– 7 –
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The supersymmetry variations are given by

δλ =

(

ḟ −
3 − p

2

Ȧs

As

)

A−1/2
s γûε−

3 − p

2

A′
s

AsB
1/2
s

[

xâ

r
γâε−

ǫα̂1...α̂p−1

(p− 1)!
γûv̂α̂1...α̂p−1âx

â

r
ε′
]

,

(4.9)

δψu =

(

∂u −
1

4

Ȧs

As
γv̂û +

1

4

A
1/2
s

B
1/2
s

K ′γûâx
â

r

)

ε

−
1

4

A′
s

A
1/2
s B

1/2
s

(

γv̂ −
K

2
γû

)[

xâ

r
γâε−

ǫα̂1...α̂p−1

(p− 1)!
γûv̂α̂1...α̂p−1âx

â

r
ε′
]

, (4.10)

δψv = ∂vε−
1

4

A′
s

A
1/2
s B

1/2
s

γû

[

xâ

r
γâε−

ǫα̂1...α̂p−1

(p− 1)!
γûv̂α̂1...α̂p−1âx

â

r
ε′
]

, (4.11)

δψα =

(

∂α −
1

4

Ȧs

As
γûα̂

)

ε+
1

4

A′
s

A
1/2
s B

1/2
s

γα̂

[

xâ

r
γâε−

ǫα̂1...α̂p−1

(p− 1)!
γûv̂α̂1...α̂p−1âx

â

r
ε′
]

, (4.12)

δψa =

(

∂a −
1

4

Ḃs

A
1/2
s B

1/2
s

γûâ

)

ε−
1

4

A′
s

As
γâ
∑

b̂6=â

[

xb̂

r
γ b̂ε−

ǫα̂1...α̂p−1

(p − 1)!
γûv̂α̂1...α̂p−1b̂x

b̂

r
ε′

]

+
(−1)p

4

A′
s

As

ǫα̂1...α̂p−1

(p − 1)!
γûv̂α̂1...α̂p−1

xa

r
ε′ (4.13)

(where xâ simply denotes xa with the numerical value of a set equal to â, and summation

over repeated indices is understood). These all vanish if

ε = A1/4
s ε̃ , (4.14)

where ε̃ is a constant spinor such that

γûε̃ = 0 , (4.15)

and

γâε̃−
ǫα̂1...α̂p−1

(p − 1)!
γûv̂α̂1...α̂p−1âε̃′ = 0 , (4.16)

with ε̃′ defined similarly to ε′, which makes 8 supersymmetries manifest for our solutions

and establishes them as the BPS p-branes. Note that the presence of these supersymme-

tries is insensitive to whether the equations of motion are satisfied, as long as the field

configuration is of the form (4.4)–(4.8).

5 Conclusions

We have presented a family of ten-dimensional supergravity solutions describing extended

extremal p-branes embedded into a dilaton-gravity plane wave, with the brane worldvolume

aligned along the propagation direction of the wave. We have assumed an isotropic plane

wave polarization in the directions transverse to the brane worldvolume, and the absence

of polarization components along the brane worldvolume. No assumptions have been made
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about the functional shape of the plane wave profile, which is contained in our family of

solutions as an arbitrary function of the light-cone time.

It could be very interesting and important to generalize our results to the case of 0-

branes. In that case, there is no worldvolume to be aligned with the propagation direction

of the wave, and the 0-brane is subject to forces induced by the plane wave. However, it

can be seen from the corresponding D0-brane DBI analysis that there are configurations

for which the gravity and dilaton forces balance each other and the 0-brane does not move.

One could expect relatively simple supergravity solutions for these cases, and they are

also precisely the solutions whose near-horizon geometry may have significance3 within the

context of time-dependent matrix models. Unfortunately, our present derivations do not

allow to construct such solutions.

After this work had been completed, a recent preprint [22] addressing very similar issues

came to our attention. In that publication, a somewhat more general ansatz (compared to

the one we have used here) is examined (non-trivial asymptotic plane wave polarizations in

the directions parallel to the brane are added); considerations are also given to intersecting

brane solutions. The advantage of our present treatment is that all the light-cone time

dependences are derived explicitly (in [22], the problem is reduced to ordinary differen-

tial equations, which are not solved), the equation determining the uu-component of the

metric (2.5) is analyzed without any assumptions (this analysis does not confirm4 the sug-

gestions of [22]), and possible generalizations to the non-extremal case are contemplated.
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A The equations of motion

For the reader’s convenience, we present here an explicit unprocessed form of the equa-

tions of motion (2.1)–(2.4) for our ansatz (2.5)–(2.8). The uu-component of Einstein’s

equations (2.1) reads

−
p− 1

2





Ä

A
−

3

2

(

Ȧ

A

)2


−
9 − p

2





B̈

B
−

1

2

(

Ḃ

B

)2

−
Ḃ

B

Ȧ

A



+
K ′A′

2B
(A.1)

−
1

r8−p

(

r8−p (KA)′

2B

)′

−
(KA)′

2B

(

p− 1

2

A′

A
+

9 − p

2

B′

B

)

=
p− 7

16
e

p−3

2
φKF

2A

B8−p
.

3We thank S. Minwalla for suggesting this.
4(2.42) of [22] assumes that K of (2.5) is a combination of r0 and 1/r7−p dependences on r. As is

evident from our analysis in section 3, however, an inclusion of r2 and 1/r5−p dependences is essential for

maintaining the functional arbitrariness of the plane wave profile. The inclusion of r0 and 1/r7−p terms is

optional, as far as the construction of plane-wave-p-brane solutions is concerned, cf. footnote 1.
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The uv-component (identical to the αα-components for our ansatz):

(

A′

2B

)′

+
8 − p

r

(

A′

2B

)

+
A′

2B

(

p− 1

2

A′

A
+

9 − p

2

B′

B

)

=
7 − p

16
e

p−3

2
φ F

2A

B8−p
. (A.2)

The ua-component:

−

(

p

2

Ȧ

A
+

8 − p

2

Ḃ

B

)′

+ 2
Ḃ

B

A′

A
=

1

2
φ̇φ′. (A.3)

The ab-component (terms proportional to δab):

−
(

B′

2B

)′

+
2p − 15

2r

B′

B
−
p+ 1

2r

A′

A
−
p+ 1

4

A′

A

B′

B
+
p− 7

4

(

B′

B

)2

=
p+ 1

16
e

p−3

2
φ F 2

B7−p
. (A.4)

The ab-component (terms proportional to xaxb):

(p− 7)

[(

B′

2B

)′

−
1

2r

B′

B

]

− (p+ 1)

[(

A′

2A

)′

−
1

2r

A′

A

]

−
p+ 1

4

A′2

A2
+
p+ 1

2

A′

A

B′

B
+

7 − p

4

B′2

B2
=

1

2
φ′2 − e

p−3

2
φ F 2

2B7−p
. (A.5)

The remaining components are identically zero. The dilaton equation (2.2) can be

written as
(

r8−pA(p+1)/2B(7−p)/2φ′
)′

r8−pA(p+1)/2B(9−p)/2
=
p− 3

4
e

p−3

2
φ F 2

B8−p
. (A.6)

Finally, the equations for the form (2.3)–(2.4) simply yield:

(

r(8−p)F
)′

= 0, Ḟ = 0. (A.7)
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